
HUNT GATHER TRADE

Larry Kann
April 26, 2024

*These are my personal notes, and, like anything made by humans, they might contain mistakes.

**This document is for informational purposes only and does not constitute financial advice. Trading involves
risks and is not suitable for all investors.

Relative Strength Index (RSI)
The Relative Strength Index (RSI) was originally introduced by J. Welles Wilder in 1978 and was
designed to help remove the erratic behavior found in constructing momentum lines. [2] This is a
popular tool/indicator for traders and analyst to use and is useful for helping to quantify trends. Put
simply, the RSI evaluates the average size of recent increases in closing prices against decreases.

The original calculation for the RSI is: [2]

RSI = 100− 100

1 +RS

Where RS is define as: [2]

RS =
Average of x days’ up closes

Average of x days’ down closes

Originally, the RSI used a 14 day (period) lookback for calculations [2] and a standard moving av-
erage (SMA) for smoothing [1]. Instead of the SMA, this example will use exponential smoothing.
This means that when we do bar-by-bar computations, the upward cumulation will suffer an inclu-
sion of zero when the bar moves downwards and vice versa.

We calculate the exponential smoothing with the following equation: [1]

Smoothedt =
(Lookback − 1) ∗ Smoothedt−1 + CurrentV alue

Lookback

This equation is derived from the expression:

St = αXt + (1− α)St−1

The RSI calculation, which is performed after each new bar is complete, looks like this:

RSI = 100 ∗ UpSum

UpSum+DnSum

This computation reflects the proportion of total gains versus total losses over the specified period,
normalized to a 0-100 scale, making it easy to interpret relative strength or weakness in themarket
context. As Masters suggests, it might be beneficial to subtract 50 from final result to center the
indicator at 0, especially if you are dealing with predictive models. [1]

1

Define imports and get data for testing
Before we can build the RSI indicator, we need to do some housekeeping. We are going to use
Python to make our RSI indicator. We want to utilize Numba’s JIT compiler, which means we need
to make sure that our code relies on NumPy Arrays and not Pandas data frames. We will need
some data to test the indicator and a way to generate some visualizations for manual observation
of the indicator’s data.

This first code block will import the libraries we need for this project:

import yfinance as yf
import pandas as pd
import numpy as np
from numba import jit
import talib
import matplotlib.pyplot as plt

This next block is a simple function that fetches daily OHLCV data on SPY for the last ten years.
It drops the columns we aren’t using and changes the column names into lowercase (a common
schematic for frameworks). We store our historical data in the history variable.

def fetch_spx_data():
ticker_symbol = "SPY"
ticker_data = yf.Ticker(ticker_symbol)
data = ticker_data.history(

period="10y",
interval="1d"

)
columns_to_remove = [

"Dividends",
"Stock Splits",
"Capital Gains"

]
data = data.drop(columns=[col for col in columns_to_remove if col in data.

↪→columns])
data.columns = [col.lower() for col in data.columns]
return data

history = fetch_spx_data()

2

Create the RSI Indicator
This function calculates the Relative Strength Index (RSI) of a given set of prices, using exponential
smoothing to compute the average gains and losses. It offers an option to adjust the RSI scale from
the traditional range of [0, 100] to a shifted range of [-50, 50]. This adjustment can be particularly
useful in predictive modeling scenarios where a centered scale might provide clearer signals for
some algorithms.

To ensure the function performs efficiently, even with the computationally intensive task of expo-
nential smoothing, it employs Numba’s JIT (Just-In-Time) compiler. This allows the function to run
at speeds suitable for intensive backtesting and real-time financial market analysis, maintaining
high performance (for Python) without sacrificing the precision needed for reliable trading signals.

Logic

1. Gains and Losses: For each period, calculate the difference between consecutive closing
prices. Positive differences represent gains, while negative differences represent losses.

2. Exponential Smoothing: Apply exponential smoothing to gains and losses separately, using
the ’lookback’ period as the basis for smoothing. This method prioritizes recent price move-
ments, providing aweighted average thatmore accurately reflects currentmarket conditions.

3. RSI Calculation: Compute the RSI using the smoothed gains and losses, converting these
values into an index that ranges from 0 to 100 (or -50 to 50 if adjusted).

Note: This function utilizes the equations and methods mentioned on the first page to calculate
the RSI. Comments in the code explain the purpose of each section.

Docstring:

"""
Parameters:
- close (np.ndarray): The array of closing prices.
- period (int): The number of periods to calculate the average gains and losses.
- subtract_50 (bool): If True, shifts the RSI range from [0, 100] to [-50, 50] for use in predictive models. Default is False.

Returns:
- np.ndarray: An array of RSI values where each value corresponds to the RSI

at a given point in time. The array has the same length as 'close'. RSI values
for the initial 'period' points are set to NaN because there's not enough data
to make the calculation.

Raises:
- ValueError: If 'period' is less than 1 or if 'close' array is empty.
"""

3

RSI Code

@jit(nopython=True)
def rsi(close, lookback, subtract_50=False):

n = close.size
output = np.full(n, np.nan) # Use NaN to indicate non-ready periods

Arrays to store raw gains and losses
gains = np.zeros(n)
losses = np.zeros(n)

Calculate gains and losses
for i in range(1, n):

delta = close[i] - close[i - 1]
if delta > 0:

gains[i] = delta
else:

losses[i] = -delta

Arrays to store smoothed gains and losses
smoothed_gain = np.zeros(n)
smoothed_loss = np.zeros(n)

Initialize the first values based on the first non-zero gain/loss
smoothed_gain[0] = gains[0] # Assumes the first value is an initialization␣

↪→step
smoothed_loss[0] = losses[0] # Same as above

Apply the smoothing formula to gains and losses
for i in range(1, n):

smoothed_gain[i] = ((lookback - 1) * smoothed_gain[i - 1] + gains[i]) /␣
↪→lookback

smoothed_loss[i] = ((lookback - 1) * smoothed_loss[i - 1] + losses[i]) /
↪→ lookback

Calculate RSI
for i in range(lookback, n):

total = smoothed_gain[i] + smoothed_loss[i]
if total != 0:

rsi = 100 * (smoothed_gain[i] / total)
output[i] = rsi - 50 if subtract_50 else rsi

return output

4

Calculate RSI on Historical Data
In this section, we just create our RSI indicators and add the values to the data frame. I have also
added the TA-Lib RSI indicator to compare it with the one I created above. This was donemore out
of curiosity than necessity.

lookback_period = 7
history['rsi'] = rsi(history['close'].values, lookback_period)
history['rsi_talib'] = talib.RSI(history['close'].values,␣
↪→timeperiod=lookback_period)

print(history[['close', 'rsi']].tail())
print(history[['close', 'rsi_talib']].tail())

close rsi
Date
2024-04-22 00:00:00-04:00 499.720001 33.432270
2024-04-23 00:00:00-04:00 505.649994 48.284286
2024-04-24 00:00:00-04:00 505.410004 47.780945
2024-04-25 00:00:00-04:00 503.489990 43.544091
2024-04-26 00:00:00-04:00 508.260010 55.087174

close rsi_talib
Date
2024-04-22 00:00:00-04:00 499.720001 33.432270
2024-04-23 00:00:00-04:00 505.649994 48.284286
2024-04-24 00:00:00-04:00 505.410004 47.780945
2024-04-25 00:00:00-04:00 503.489990 43.544091
2024-04-26 00:00:00-04:00 508.260010 55.087174

Calculate daily returns and define RSI threshold values
In financial analysis, calculating returns is crucial for assessing investment performance, risk, and
the overall dynamics of financial markets. Three common types of returns often computed in
financial datasets include simple returns, log returns, and cumulative returns, each serving distinct
purposes and providing different insights.

Simple returns, often referred to as relative changes, measure the percentage change from one
period to another. In the provided code, simple_returns are calculated using the pct_change()
method, which computes the percentage change between consecutive closing prices.

Log returns, calculated by taking the natural logarithm of the ratio of consecutive closing prices,
are preferred for mathematical tractability in financial models.

Cumulative simple returns provide the total aggregated return of an investment over a period. In
the code, cumulative_simple_returns are computed by cumulatively multiplying (1 plus each
period’s simple return) and subtracting one, effectively compounding the returns over time.

Each return type provides valuable insights depending on the context: simple returns for imme-
diate period-over-period performance, log returns for continuous compounding and multi-period

5

analysis, and cumulative returns for total investment performance over time. For this paper, I will
use the log_returns for visualizations with the RSI indicator.

history['simple_returns'] = history['close'].pct_change()
history['log_returns'] = np.log(history['close'] / history['close'].shift(1))
history['cumulative_simple_returns'] = (1 + history['simple_returns']).
↪→cumprod() - 1

rsi_top = 70
rsi_bottom = 30

Plot the indicator and returns
The following sections are a series of visualizations for examining the RSI and determiningwhether
we can see any patterns or extract informationmanually. Wewill plot the RSI and returns separately
and look for any apparent nonstationarity in our series. Then, wewill create a series of scatter plots
and get some initial impressions from our data.

RSI Plot

plt.figure(figsize=(15, 6)) # Wider than the default
plt.plot(history.index, history['rsi'], label='RSI', color='grey', linewidth=0.
↪→5)

plt.title('RSI Over Time')
plt.xlabel('Date')
plt.ylabel('RSI')
plt.axhline(50, color='black', linestyle='--', label='Middle', linewidth=1)
plt.legend()
plt.show()

6

Impressions: Visual inspection of the RSI plot shows our indicator (at least in the 10 year window
we are looking at) is mostly stationary. Values appear to never hit the min/max values.

Log Returns Plot

plt.figure(figsize=(15, 6)) # Wider than the default
plt.plot(history.index, history['log_returns'], label='Log Returns',␣
↪→color='grey', linewidth=0.5)

plt.title('Log Returns over Time')
plt.xlabel('Date')
plt.ylabel('Log Returns')
plt.legend()
plt.show()

Impressions: Returns appear mostly stationary. There is a clear aberrancy in 2020 that might
show a break in the mean in future testing.

Plot RSI vs. Log Returns

This plot will help us understand where the most valuable information in the RSI resides in com-
parison to the returns. A vertical line has been placed on the chart to help with visualization, along
with two horizontal lines denoting where our threshold values are.

plt.figure(figsize=(12, 6))
plt.scatter(history['log_returns'], history['rsi'], c=history['rsi'], s=10,␣
↪→cmap='viridis')

Define center line and RSI tails/thresholds
plt.axvline(0, color='black', linestyle='--', linewidth=1)

7

plt.axhline(rsi_top, color='red', linestyle='--', linewidth=1,␣
↪→label=f'Overbought ({rsi_top})')

plt.axhline(rsi_bottom, color='green', linestyle='--', linewidth=1,␣
↪→label=f'Oversold ({rsi_bottom})')

Colorbar to show the color scale in relation to the RSI values
plt.colorbar()

plt.title('Scatter Plot of RSI vs. Daily Returns')
plt.xlabel('Daily Returns')
plt.ylabel('RSI Values')
plt.show()

Impressions: When you look at the returns above/below our threshold lines, you can see that
their is a stronger correlation with returns. For example, it appears that above the upper threshold
(70) there are more positive returns than there are negative.

Plot RSI vs. Volume

These charts help us determine if there is any correlation between the volume and the RSI value.
First, we plot all the data as a scatter plot to determine if there are any specific variations we want
to examine. Then, we generate scatter plots for RSI values above and below any area of interest.

8

plt.figure(figsize=(12, 6))
plt.scatter(history['volume'], history['rsi'], c=history['rsi'], s=10,␣
↪→cmap='viridis')

plt.colorbar() # Adds a colorbar to show the color scale in relation to the␣
↪→RSI values

plt.axhline(rsi_top, color='red', linestyle='--', linewidth=1,␣
↪→label=f'Overbought ({rsi_top})')

plt.axhline(rsi_bottom, color='green', linestyle='--', linewidth=1,␣
↪→label=f'Oversold ({rsi_bottom})')

plt.title('Scatter Plot of RSI vs. Volume')
plt.xlabel('Volume')
plt.ylabel('RSI Values')
plt.show()

Impressions: The majority cluster is below 100,000,000 (1e8) volume. Above that value and the
results aremore disbursed and less tightly clustered. Further visualizations of data (RSI vs. returns)
above and below this volume threshold would be ideal.

Plot RSI vs log returns above and below volume threshold

This comparison will separate our returns into two different plots. The first one will be high volume
(defined as > 1e8 volume) followed by low volume (defined as < 1e8 volume). This should help us
determine if the volume can help improve trade entry confidence.

9

Define your volume threshold
volume_threshold_high = 100000000 # Example threshold (1e8)

Filter the data where volume is above the threshold
high_volume_data = history[history['volume'] > volume_threshold_high]

plt.figure(figsize=(12, 6))
plt.scatter(high_volume_data['log_returns'], high_volume_data['rsi'],␣
↪→c=high_volume_data['rsi'], s=10, cmap='viridis')

plt.axvline(0, color='black', linestyle='--', linewidth=1)
plt.axhline(rsi_top, color='red', linestyle='--', linewidth=1,␣
↪→label=f'Overbought ({rsi_top})')

plt.axhline(rsi_bottom, color='green', linestyle='--', linewidth=1,␣
↪→label=f'Oversold ({rsi_bottom})')

plt.colorbar()
plt.title('Scatter Plot of RSI vs. Daily Returns (High Volume)')
plt.xlabel('Daily Returns')
plt.ylabel('RSI Values')
plt.legend()
plt.show()

Define your volume threshold for low volume
volume_threshold_low = 100000000 # Same or different threshold

10

Filter the data where volume is below the threshold
low_volume_data = history[history['volume'] < volume_threshold_low]

plt.figure(figsize=(12, 6))
plt.scatter(low_volume_data['log_returns'], low_volume_data['rsi'],␣
↪→c=low_volume_data['rsi'], s=10, cmap='viridis')

plt.axvline(0, color='black', linestyle='--', linewidth=1)
plt.axhline(rsi_top, color='red', linestyle='--', linewidth=1,␣
↪→label=f'Overbought ({rsi_top})')

plt.axhline(rsi_bottom, color='green', linestyle='--', linewidth=1,␣
↪→label=f'Oversold ({rsi_bottom})')

plt.colorbar()
plt.title('Scatter Plot of RSI vs. Daily Returns (Low Volume)')
plt.xlabel('Daily Returns')
plt.ylabel('RSI Values')
plt.legend()
plt.show()

Impressions: Both plots show better returns (respectively) when we are above/below the RSI
threshold values. When volume is above 1e8, the associated returns show minimal returns in the
opposite direction. There seems to be a stronger correlation with negative returns when below 30

11

than with positive returns when above 70. However, there appear to be more observations above
the top threshold than below.

Summary
All interpretations, inclinations, or hypotheses drawn from this data are the author’s interpretations.
They may contain errors.

The RSI calculation functions as intended and appears to be stationary via eye test.

The scatter plot depicting the relationship between the Relative Strength Index (RSI) and returns
reveals distinct patterns at the established thresholds. Notably, when the RSI exceeds the upper
threshold, there is a predominant occurrence of positive returns, suggesting a strong correlation
between high RSI values and upwardmarket trends. Conversely, RSI values below the lower thresh-
old are predominantly associated with negative returns, indicating a likely continuation of down-
ward trends. These observations support the hypothesis that RSI values beyond these thresholds
can be predictive of the corresponding trend direction in returns. This trend-predictive behavior of
the RSI is particularly significant as it validates the use of RSI as amomentum indicator in technical
analysis, providing insights into potential market movements based on historical price data.

The analysis of the RSI versus returns, segmented by trading volume (above and below 1∗108), cor-
roborates the initial observations that RSI extremes predict return directions. Notably, in instances
where the trading volume surpasses the 1∗108 threshold, there are significantly fewer occurrences
of returns that contradict the expected trend direction. Specifically, above the upper threshold, neg-
ative returns are less frequent, enhancing the reliability of RSI as an indicator of positive market
momentum under high-volume conditions.

It is important to highlight that, despite lower volumes, the pattern of RSI aligning with directional
trends in returns remains evident. This persistence suggests that while volume amplifies the pre-
dictive clarity of the RSI, the indicator itself is robust across different volume levels. This observa-
tion opens avenues for adjusting the volume threshold in future analyses to refine our understand-
ing of volume’s impact on the predictive power of the RSI.

12

References
[1] Timothy Masters. Statistically Sound Indicators for Financial Market Prediction. Self-Published,

2 edition, 2020.

[2] John J. Murphy. Technical Analysis of the Financial Markets. New York Institute of Finance,
1999.

13

	Relative Strength Index (RSI)
	Define imports and get data for testing
	Create the RSI Indicator
	RSI Code

	Calculate RSI on Historical Data
	Calculate daily returns and define RSI threshold values
	Plot the indicator and returns
	RSI Plot
	Log Returns Plot
	Plot RSI vs. Log Returns
	Plot RSI vs. Volume
	Plot RSI vs log returns above and below volume threshold

	Summary

